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The role of topology

Materials of the same
composition (e.g. pure carbon)
can have different properties.
Goal: Describe their
conformations qualitatively.

Potential applications:
� taxonomy for crystals
� recognition of structures
� enumeration of possibilities
� design of new materials
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Topology?

But what do we mean by a crystal topology?
There are at least two possible versions:

intrinsic topology — the structure itself

ambient topology — its embedding into space

Any knot is intrinsically just a
circle.
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Some recent
enumerations

Numerical scan (O'KEEFFE et al., 1992).

Vector-labelled graphs (CHUNG et al., 1984).

Symmetry-labelled graphs (TREACY et al.,
1997).

Tilings (DELGADO et al., 1999).

All these approaches produce many duplicates.

The last 3 are in some sense conceptually
complete.
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Crystal models

A hierarchy of models:

Atom
positions in
Faujasite.

The
atom-bond
network.

Network
decomposed
into cages.
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Capturing all space

Here, the remaining
space is split up into
“super cages” to form
a tiling.

Tilings have been
proposed as models
for matter time and
again since antiquity.
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Platonic atoms
PLATO thought that the elements �re , air, water
and earth were composed of regular, tetrahedra,
octahedra, icosahedra and hexahedra (cubes),
respectively.

ARISTOTLE later objected: most of these shapes
do not �ll space without gaps.
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Snow balls

The diamond net as a sphere
packing. KEPLER used these to
explain the structures of snow
�ak es.

Compressing evenly
yields what we now call a
Voronoi tiling. Both
concepts are still popular.
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Rubber tiles
Two tilings are of the same topological type, if
they can be deformed into each other as if they
were painted on a rubber sheet.
More formall y: some homeomorphism between
the tiled spaces takes one into the other.
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Are these the same?
A problem posed by LOTHAR COLLATZ (1910±1990).
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Are these the same?
A problem posed by LOTHAR COLLATZ (1910±1990).

Yes, they are!
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Techniques

In order to represent tilings in
a �nite way, we start by
dissecting tiles into triangles
as shown below.

A color-coding later helps
with the reassembly. Each
corner receives the same
color as the opposite side.
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Blueprints for tilings
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Heaven & Hell tilings

Each edge separates
one black and one
non-black tile.

All black tiles are
related by symmetry.

There are 23 types of
such tilings on the
ordinary plane.

(A.W.M. DRESS, D.H. HUSON. Revue Topologie Structurale, 1991)
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All heaven and hell
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Simple tilings

A spatial tiling is simple if
it has four edges meeting
at each vertex and one
face at each angle.

It is uninodal if all vertices
are related by symmetry.

There are 9 types of
simple, uninodal tilings in ordinary space.

(O. DELGADO FRIEDRICHS, D.H. HUSON. Discrete & Computational Geometry, 1999)
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Petroleum crac kers

Of the 9 types of
simple, uninodal
tilings, 7 carry
approved zeolite
frameworks as of the
"Atlas".

But how can we
produce all the other
frameworks?

SOD LTA

RWY RHO

FAU KFI CHA
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Is diamond simple?

The diamond net has no simple tiling — but
almost. We just have to allow two faces instead
of one at each angle. The tile is a hexagonal
tetrahedron, also known as an adamantane unit.

There are 1632 such quasi-simple tilings, which
carry all 14 remaining uninodal zeolites.
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Ambiguities

The tiling for an atom-bond graph is not unique.

We also need methods to analyze nets directly.
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Barycentric drawings

Place each vertex in
the center of gravity
of its neighbors:

p(v) =
1

d(v)

X

vw2E

p(w)

where
p = placement,
d = degree.
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Tutte' s idea
[TUTTE 1960/63]:

Pick and realize a
convex outer face.

Place rest
barycentrically.

G planar, 3-connected
) convex

planar drawing.
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Periodic version
Place one vertex, choose
linear map Zd ! Rd.

Theorem:
This de�nes a unique
barycentric placement.

Corollar y:
All barycentric
placements of a net are
af�nely equivalent.
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Stability

In a barycentric placement, vertices may collide:

If that does not happen, the net is called stable.
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Ordered traversals

For a locally stable net:

Place start vertex,
choose map Zd ! Rd.

Do a breadth �rst
search.

Sort neighbors by
position.

) unique vertex numbering
) polynomial time isomorphism test
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Ordered traversals

For a locally stable net:

Place start vertex,
choose map Zd ! Rd.

Do a breadth �rst
search.

Sort neighbors by
position.

2 4
6

5

7 8

9
1

3

) unique vertex numbering
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Natural tilings
(local version)

De�nition:
A tiling is called natural for the net it carries if:

1. It has the full symmetry of the net.

2. No tile has a unique largest facial ring.

3. No tile can be split further without violating
these conditions or adding edges.

Note:

A natural tiling need not be unique for its net.
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Natural (quasi-)
simple tilings

The 9 simple tilings are
all natural.

Of the 1632 quasisimple
tilings, 94 are natural.

Among these 103 tilings,
no net appears twice.

All 21 uninodal zeolites
appear, except ATO.

ATO has a natural tiling
which is not quasisimple.

AFI

ATO
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Some basic nets
Which are the spatial nets every school child
should know about? Here's one suggestion:

The 5 regular nets and their tilings.
(O. DELGADO FRIEDRICHS, M. O'KEEFFE, O.M. YAGHI. Acta Cryst A, 2002)
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Other scales
Cellular structures occur in nature at all scales.
How can we grasp their shapes and dynamics?

(Image: Doug Durian, UCLA Physics) (Image: Sloan Digital Sky Survey)
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