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Crystal topologies

Materials of the same chemical
composition can have very
different characteristics.
Goal: Describe their
conformations qualitatively.

Potential applications:
• taxonomy
• structure recognition
• design of new materials
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Topology?

The topology of an object conveys the aspects of
its shape that are invariant under deformations.

intrinsic topology — the structure itself

ambient topology — its embedding into space

If we allow a knot to pass through
itself, it can be turned into a circle.
Its “knottedness” is not intrinsic.

Here, we will consider only intrinsic topology.
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Conventions for
today

We will call periodic graphs also p-graphs or
sometimes just graphs.

If not mentioned otherwise, all graphs are
connected.
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The vector
representation (1)

Two periodic graphs.
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The vector
representation (1)

Two periodic graphs.

The same orbit graph.
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The vector
representation (2)

Choose vertex
representatives and a
coordinate system for
translation vectors.
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The vector
representation (2)

Choose vertex
representatives and a
coordinate system for
translation vectors.

(0,1)

(0,1)

(1,0)

(2,−1)

(1,−1) (−3,1)

Choose directions for
orbit graph edges and
label with shift vectors.
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The vector
representation (2)

A “nicer” system of
representatives.

(0,0)

(−1,1)

(0,0)

(1,0)

(0,0) (−1,0)

The new edge labels.
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The vector
representation (3)

(0,0)

(−1,1)

(0,0)

(1,0)

(0,0) (−1,0)

1 2 3 4

Assign vertex numbers.

Analyzing Periodic Nets via the Barycentre Construction – p. 7



The vector
representation (3)

(0,0)

(−1,1)

(0,0)

(1,0)

(0,0) (−1,0)

1 2 3 4

Assign vertex numbers.

(0,0)

(−1,1)

(0,0)

(−1,0)

(0,0) (−1,0)

1 2 3 4
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The vector
representation (3)

(0,0)

(−1,1)

(0,0)

(1,0)

(0,0) (−1,0)

1 2 3 4

Assign vertex numbers.

(0,0)

(−1,1)

(0,0)

(−1,0)

(0,0) (−1,0)

1 2 3 4

Normalize edges.

A (sorted) tabular
representation:

1 2 0 0
1 3 -1 1
1 4 -1 0
2 3 0 0
2 4 0 0
3 4 -1 0
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Now we see a
difference
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Now we see a
difference

(1,0)

(0,1)

(0,0)

(0,0)

(0,0) (0,0)

1 2 3 4
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Now we see a
difference

(1,0)

(0,1)

(0,0)

(0,0)

(0,0) (0,0)

1 2 3 4

1 2 1 0
1 3 0 1
1 4 0 0
2 3 0 0
2 4 0 0
3 4 0 0
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But we have a
problem

One of these things is not like the others...

1 2 0 1

1 3 0 1

1 4 -2 1

2 3 1 -1

2 4 -1 0

3 4 -3 1

1 2 0 0

1 3 -1 1

1 4 -1 0

2 3 0 0

2 4 0 0

3 4 -1 0

1 2 1 0

1 3 0 1

1 4 0 0

2 3 0 0

2 4 0 0

3 4 0 0
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Some questions

Given a p-graph in vector representation:

How can we draw it nicely?
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Some questions

Given a p-graph in vector representation:

How can we draw it nicely?

What is the ideal symmetry?
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Some questions

Given a p-graph in vector representation:

How can we draw it nicely?

What is the ideal symmetry?

Have we seen it before?
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Some questions

Given a p-graph in vector representation:

How can we draw it nicely?

What is the ideal symmetry?

Have we seen it before?

In the following, we will look at Systre’s approach
to these questions.
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Isomorphisms (1)

An isomorphism f between periodic graphs
maps vertices to vertices, edges to edges
and translations to translations.

Analyzing Periodic Nets via the Barycentre Construction – p. 11



Isomorphisms (1)

An isomorphism f between periodic graphs
maps vertices to vertices, edges to edges
and translations to translations.

All maps are one-to-one correspondences.
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Isomorphisms (1)

An isomorphism f between periodic graphs
maps vertices to vertices, edges to edges
and translations to translations.

All maps are one-to-one correspondences.

Incidences are preserved.
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Isomorphisms (1)

An isomorphism f between periodic graphs
maps vertices to vertices, edges to edges
and translations to translations.

All maps are one-to-one correspondences.

Incidences are preserved.

For each vertex v and each translation t:
f(v + t) = f(v) + f(t).
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Isomorphisms (1)

An isomorphism f between periodic graphs
maps vertices to vertices, edges to edges
and translations to translations.

All maps are one-to-one correspondences.

Incidences are preserved.

For each vertex v and each translation t:
f(v + t) = f(v) + f(t).

In other words: an isomorphism can renumber
the vertices of the orbit graph and change the
coordinate system for the shift vectors.
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Isomorphisms (2)

Isomorphisms always go in both directions.
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Isomorphisms (2)

Isomorphisms always go in both directions.

Two isomorphism applied in sequence form
another isomorphism.
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Isomorphisms (2)

Isomorphisms always go in both directions.

Two isomorphism applied in sequence form
another isomorphism.

A self-isomorphism of a p-graph is called an
automorphism.
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Isomorphisms (2)

Isomorphisms always go in both directions.

Two isomorphism applied in sequence form
another isomorphism.

A self-isomorphism of a p-graph is called an
automorphism.

⇒ The automorphisms of a p-graph form a
group, its automorphism group.
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Isomorphisms (2)

Isomorphisms always go in both directions.

Two isomorphism applied in sequence form
another isomorphism.

A self-isomorphism of a p-graph is called an
automorphism.

⇒ The automorphisms of a p-graph form a
group, its automorphism group.

Important: Every symmetry of an embedded
p-graph corresponds to an automorphism, but
the reverse is not always true.
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Barycentric drawings

(0,0)

(1,1)(−1,1)

(0,−2)

Place each vertex v in
the barycenter of its
neighbors:
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Barycentric drawings

(0,0)

(1,1)(−1,1)

(0,−2)

Place each vertex v in
the barycenter of its
neighbors:

∑

w∈N(v)

p(w) − p(v) = 0
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Barycentric drawings

(0,0)

(1,1)(−1,1)

(0,−2)

Place each vertex v in
the barycenter of its
neighbors:

∑

w∈N(v)

p(w) − p(v) = 0

where
p(v) = position of v,
N(v) = neighbors of v.

Analyzing Periodic Nets via the Barycentre Construction – p. 13



Tutte’s idea
(for finite graphs)

[TUTTE 1960/63]:

Pick and realize a
convex outer face.

Place rest
barycentrically.
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Tutte’s idea
(for finite graphs)

[TUTTE 1960/63]:

Pick and realize a
convex outer face.

Place rest
barycentrically.

G planar, 3-connected
⇒ convex

planar drawing.
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Periodic version
Theorem: Any proper
choice of positions for one
vertex and its translates
gives rise to a unique
barycentric placement.
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Periodic version
Theorem: Any proper
choice of positions for one
vertex and its translates
gives rise to a unique
barycentric placement.

Consequence: All proper
barycentric placements of
a p-graph are “the same
up to a choice of
coordinate system.”
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Uniqueness proof

Barycentric placements are critical points of

W (p) :=
∑

vw∈E

||p(w) − p(v)||2,

where E is a set of edge representatives.
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Uniqueness proof

Barycentric placements are critical points of

W (p) :=
∑

vw∈E

||p(w) − p(v)||2,

where E is a set of edge representatives.

Because p-graph is connected:
||p|| large ⇒ ∃ long edge ⇒ W (p) large.
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Uniqueness proof

Barycentric placements are critical points of

W (p) :=
∑

vw∈E

||p(w) − p(v)||2,

where E is a set of edge representatives.

Because p-graph is connected:
||p|| large ⇒ ∃ long edge ⇒ W (p) large.

W quadratic ⇒ exactly one critical point.
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Uniqueness proof

Barycentric placements are critical points of

W (p) :=
∑

vw∈E

||p(w) − p(v)||2,

where E is a set of edge representatives.

Because p-graph is connected:
||p|| large ⇒ ∃ long edge ⇒ W (p) large.

W quadratic ⇒ exactly one critical point.

(This also shows that barycentric placement
minimizes the square sum of edge lengths.)
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Caveat
Barycentric positions can “collide”:
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Caveat
Barycentric positions can “collide”:

A p-graph without collisions is called stable —
one without collisions of next-nearest neighbors
is called locally stable.
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Symmetries

Uniqueness of barycentric placements ⇒
each automorphism induces an (affine)
symmetry.
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Symmetries

Uniqueness of barycentric placements ⇒
each automorphism induces an (affine)
symmetry.

There is a metric that turns all these into
crystallographic symmetries.
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Symmetries

Uniqueness of barycentric placements ⇒
each automorphism induces an (affine)
symmetry.

There is a metric that turns all these into
crystallographic symmetries.

For stable graphs, none of these symmetries
is the identity.
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Symmetries

Uniqueness of barycentric placements ⇒
each automorphism induces an (affine)
symmetry.

There is a metric that turns all these into
crystallographic symmetries.

For stable graphs, none of these symmetries
is the identity.

⇒ A stable p-graph has an embedding in which
every automorphism is realized as a symmetry.
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Ordered traversals
For a locally stable periodic graph:

Place a vertex and
its translates.

(0,0) (4,0)

(0,4)

1
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Ordered traversals
For a locally stable periodic graph:

Place a vertex and
its translates.

⇒ barycentric
positions.

1
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Ordered traversals
For a locally stable periodic graph:

Place a vertex and
its translates.

⇒ barycentric
positions.

Do a breadth first
traversal, using
position for sorting.

(0,0)

(1,1)(−1,1)

(0,−2)

2 4
1

3
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Ordered traversals
For a locally stable periodic graph:

Place a vertex and
its translates.

⇒ barycentric
positions.

Do a breadth first
traversal, using
position for sorting.

Vertex order only
depends on initial
step.

2 4
6

5

7 8

9
1

3
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Finding
isomorphisms

Given periodic graphs A and B:

Compute barycentric positions for both
graphs.
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Finding
isomorphisms

Given periodic graphs A and B:

Compute barycentric positions for both
graphs.

Pick a vertex v of A and guess its image w in
B.
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Finding
isomorphisms

Given periodic graphs A and B:

Compute barycentric positions for both
graphs.

Pick a vertex v of A and guess its image w in
B.

Guess a linear map (matrix) that maps
positions for A with origin at v to positions for
B with origin at w.
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Finding
isomorphisms

Given periodic graphs A and B:

Compute barycentric positions for both
graphs.

Pick a vertex v of A and guess its image w in
B.

Guess a linear map (matrix) that maps
positions for A with origin at v to positions for
B with origin at w.

Use an ordered traversal to see if the
guesses were correct.
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Isomorphism testing

Goal: find a unique representation for each
periodic graph.
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Isomorphism testing

Goal: find a unique representation for each
periodic graph.

⇒ very fast isomorphism testing.
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Isomorphism testing

Goal: find a unique representation for each
periodic graph.

⇒ very fast isomorphism testing.

Idea: generate a small characteristic
collection of representations and pick the
lexicographically smallest.
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Isomorphism testing

Goal: find a unique representation for each
periodic graph.

⇒ very fast isomorphism testing.

Idea: generate a small characteristic
collection of representations and pick the
lexicographically smallest.

By characteristic collection we mean one that
does not depend on the way the graph was
originally written.
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

1

1
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

1 2
(0,0)

1
2
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

1 23
(0,0)

(0,0)

1
2

3
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

(0,0)

14 23

(0,0)

(0,0)

1
42

3
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

(0,0)

(−1,0)

14 23

(0,0)

(0,0)

1
42

3
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

(0,0)

(0,1)

(−1,0)

14 23

(0,0)

(0,0)

1
42

3
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

(0,0)

(0,1)

(−1,0)

14 23

(0,0)

(0,0)

1
42

3
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Labelling the orbit
graph

Mimik an ordered traversal on the unlabelled
orbit graph; use the first vertex of each set of
translates as that set’s representative:

(0,0)

(0,1)

(0,−1)

(−1,0)

14 23

(0,0)

(0,0)

1
42

3
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Characteristic
traversals

Wanted: A small list of start conditions.
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Characteristic
traversals

Wanted: A small list of start conditions.

Idea: Map edge directions to unit vectors,
use source of first as start vertex.
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Characteristic
traversals

Wanted: A small list of start conditions.

Idea: Map edge directions to unit vectors,
use source of first as start vertex.

⇒ At most (2 · |E|)d characteristic traversals.
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Characteristic
traversals

Wanted: A small list of start conditions.

Idea: Map edge directions to unit vectors,
use source of first as start vertex.

⇒ At most (2 · |E|)d characteristic traversals.

Traversal costs O(d · |E| · log |E|) (sorting).
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Characteristic
traversals

Wanted: A small list of start conditions.

Idea: Map edge directions to unit vectors,
use source of first as start vertex.

⇒ At most (2 · |E|)d characteristic traversals.

Traversal costs O(d · |E| · log |E|) (sorting).

Plus: precise arithmetic, basis conversion.
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Characteristic
traversals

Wanted: A small list of start conditions.

Idea: Map edge directions to unit vectors,
use source of first as start vertex.

⇒ At most (2 · |E|)d characteristic traversals.

Traversal costs O(d · |E| · log |E|) (sorting).

Plus: precise arithmetic, basis conversion.

Final bound still polynomial.
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Characteristic
traversals

Wanted: A small list of start conditions.

Idea: Map edge directions to unit vectors,
use source of first as start vertex.

⇒ At most (2 · |E|)d characteristic traversals.

Traversal costs O(d · |E| · log |E|) (sorting).

Plus: precise arithmetic, basis conversion.

Final bound still polynomial.

⇒ the isomorphism problem
for locally stable p-graphs is in P.

Analyzing Periodic Nets via the Barycentre Construction – p. 23



Conclusion
Using barycentric placement, we can:

Draw graphs in the plane and in space.
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Conclusion
Using barycentric placement, we can:

Draw graphs in the plane and in space.

Determine symmetries.
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Conclusion
Using barycentric placement, we can:

Draw graphs in the plane and in space.

Determine symmetries.

Construct canonical forms to use for
isomorphism testing.
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Conclusion
Using barycentric placement, we can:

Draw graphs in the plane and in space.

Determine symmetries.

Construct canonical forms to use for
isomorphism testing.

Restriction: graphs must be (locally) stable.
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Conclusion
Using barycentric placement, we can:

Draw graphs in the plane and in space.

Determine symmetries.

Construct canonical forms to use for
isomorphism testing.

Restriction: graphs must be (locally) stable.

But: for non-stable p-graphs, barycentric
placements might still help us reduce these
problems to the finite case.

Analyzing Periodic Nets via the Barycentre Construction – p. 24



Thanks for your attention!

Software is available at

www.gavrog.org
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