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What is a tiling?

Partition of a
manifold (e.g. the
plane).
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What is a tiling?

Partition of a
manifold (e.g. the
plane).

No overlaps.

No holes.

Tiles are bounded.

Tiles are cells
(have no holes).

Some Elementary Tiling Theory – p. 2



Symmetries

Equivariant tilings
have specified
symmetries.
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A periodic tiling
consists of
translated copies
of a compact motif
(containing finitely
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have specified
symmetries.

A periodic tiling
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(containing finitely
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Equivalence

Topologically equivalent
tilings can be deformed
into each other.
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Equivalence

Topologically equivalent
tilings can be deformed
into each other.

In equivariantly
equivalent tilings, the
deformation respects
symmetries.

Some Elementary Tiling Theory – p. 4



Are these the same?
A problem posed by LOTHAR COLLATZ (1910–1990).
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Are these the same?
A problem posed by LOTHAR COLLATZ (1910–1990).
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Are these the same?
A problem posed by LOTHAR COLLATZ (1910–1990).

Yes, they are!
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Barycentric
triangulation

In order to represent tilings in
a finite way, we start by
dissecting tiles into triangles
as shown below.

A color-coding later helps
with the reassembly. Each
corner receives the same
color as the opposite side.
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Symbols for tilings
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A Symmetric pieces get a
common name,
leading to
compact
assembly
instructions.

A
C

B

Face and vertex degrees
replace particular shapes.
The result is called a
Delaney-Dress symbol (or
shorter, a D-symbol.)

C
8/3

A

B

4/3

8/3
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Ingredients

A D-symbol of dimension d consists of

A

B

C

A finite set of so-called
chambers,
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Ingredients

A D-symbol of dimension d consists of

A

B

C

s

s
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s

s

0

1

1

2

2

0

0

A finite set of so-called
chambers,

Operations s0, . . . , sd that
map chambers to
chambers,
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Ingredients

A D-symbol of dimension d consists of

A

B

C

4/3

8/3

8/3

m

m

m

m

m

m

12

12

12

01

01

01

A finite set of so-called
chambers,

Operations s0, . . . , sd that
map chambers to
chambers,

Functions
m0,1, . . . , md−1,d that map
chambers to integers.
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Formal conditions
For C a chamber and
i, j ∈ {0, . . . , d}, we always
have

si(si(C)) = C
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Formal conditions
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have
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Formal conditions
For C a chamber and
i, j ∈ {0, . . . , d}, we always
have

si(si(C)) = C

si(sj(si(sj(C)))) = C

if |i − j| > 1

(si ◦ sj)
mi,j(C)(C) = C

mi,j(C) = mi,j(si(C)) =
mi,j(sj(C))
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The curvature test

3/3

12/3

12/3

For each chamber C,
compute

1
m01(C) + 1

m12(C) −
1
2 .
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The curvature test

3/3

12/3

12/3

1/3+1/3−1/2

1/12+1/3−1/2

1/12+1/3−1/2

For each chamber C,
compute

1
m01(C) + 1

m12(C) −
1
2 .
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The curvature test

3/3

12/3

12/3

1/3+1/3−1/2 = 1/6

1/12+1/3−1/2 = −1/12

1/12+1/3−1/2 = −1/12

For each chamber C,
compute

1
m01(C) + 1

m12(C) −
1
2 .
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The curvature test

3/3

12/3

12/3

1/6

−1/12

−1/12

+

+

= 0

For each chamber C,
compute

1
m01(C) + 1

m12(C) −
1
2 .

Sum up to obtain the
curvature K.
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+

+
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For each chamber C,
compute

1
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1
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K = 0 ⇒ tiling of the euclidean plane.
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The curvature test

4/3

12/3

12/3

1/12

−1/12

−1/12

+

+

= −1/12

For each chamber C,
compute

1
m01(C) + 1

m12(C) −
1
2 .

Sum up to obtain the
curvature K.

K = 0 ⇒ tiling of the euclidean plane.
K < 0 ⇒ tiling of the hyperbolic plane.
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The curvature test

3/3

10/3

10/3

1/6

−1/15

−1/15

+

+

= 1/30

For each chamber C,
compute

1
m01(C) + 1

m12(C) −
1
2 .

Sum up to obtain the
curvature K.

K = 0 ⇒ tiling of the euclidean plane.
K < 0 ⇒ tiling of the hyperbolic plane.
K > 0 ⇒ possibly a tiling of the sphere.
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Why D-symbols?

Easy to represent on a computer.

If two tilings have the same D-symbol, they
are equivariantly equivalent.

Many properties of tilings can be easily
translated into the language of D-symbols.

⇒ D-symbols are great for encoding tilings and
for solving classification problems.
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Example:
Heaven & Hell tilings

Each edge separates
one black and one
non-black tile.

All black tiles are
related by symmetry.
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Example:
Heaven & Hell tilings

Each edge separates
one black and one
non-black tile.

All black tiles are
related by symmetry.

There are 23 topological
types of such tilings on
the ordinary plane.

(A.W.M. DRESS, D.H. HUSON. Revue Topologie Structurale, 1991)
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All heaven and hell
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Transitivity

A tiling is called

vertex-p-transitive if there are p kinds of
vertex up to symmetry.
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Transitivity

A tiling is called

vertex-p-transitive if there are p kinds of
vertex up to symmetry.

edge-q-transitive if there are q kinds of edge
up to symmetry.

etc.

It is convenient to combine those numbers in a
transitivity symbol pqr or - for 3d tilings - pqrs.

Tile-1-transitive tilings are sometimes called
isohedral.
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Quick test
What is the transitivity of this tiling?
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Quick test
What is the transitivity of this tiling?

A B C

A B C

A B C

It is 122.
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Fundamental tilings

A tiling is called fundamental if it is
tile-1-transitive and the site symmetry for
each tile is trivial.
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Fundamental tilings

A tiling is called fundamental if it is
tile-1-transitive and the site symmetry for
each tile is trivial.

The tiles are then asymmetric units (a.k.a.
fundamental domains) for the tiling’s
symmetry group.

Heesch proved (around 1935) that there are
exactly 46 equivariant types of fundamental
tilings in the plane.
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Fundamental tilings

A tiling is called fundamental if it is
tile-1-transitive and the site symmetry for
each tile is trivial.

The tiles are then asymmetric units (a.k.a.
fundamental domains) for the tiling’s
symmetry group.

Heesch proved (around 1935) that there are
exactly 46 equivariant types of fundamental
tilings in the plane.

These fall into 11 topological types which are
known as Laves nets.
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Some of Heesch’s
tilings
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A hierarchy of tilings

A tile with trivial site symmetry can be split to
increase the tile-transitivity of a tiling.
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Repeated splitting and glueing, starting from
the fundamental tilings, produces all tilings of
the plane.
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A hierarchy of tilings

A tile with trivial site symmetry can be split to
increase the tile-transitivity of a tiling.

Equivalent tiles surrounding a center of
symmetry can be glued together to form a tile
with non-trivial site symmetry.

Repeated splitting and glueing, starting from
the fundamental tilings, produces all tilings of
the plane.

The same process works for tilings of the
sphere and the hyperbolic plane.
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Split and glue
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Split and glue
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Split and glue
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Split and glue
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Dualization

To dualize a tiling:
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Put a new vertex in each
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each old vertex.
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Dualization

To dualize a tiling:

Put a new vertex in each
tile.

Connect new vertices in
adjacent tiles.

There is then a new tile for
each old vertex.

In fact, the dual of the dual is
the original tiling.
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Dual D-symbols

A

A

B

B

C

C

D

D

E

E

5/3 5/4 5/4 5/3 5/3
A B C D E

Dualization (in 2d) switches

s0 with s2 (red with blue) and
m01 with m12.

3/5 4/5 4/5 3/5 3/5
A B C D E
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Comparing symbols

Are these two symbols really the same?

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
A

G

B

H

C

I

D

J

E F

3/5 6/5

3/5

6/5 3/5

3/5

3/5

3/5 3/5 3/5

f g

a

h i

b

j

c d e

G matches g or h.

Some Elementary Tiling Theory – p. 22



Comparing symbols

Are these two symbols really the same?

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
A

G

B

H

C

I

D

J

E F

3/5 6/5

3/5

6/5 3/5

3/5

3/5

3/5 3/5 3/5

f g

a

h i

b

j

c d e

G matches g or h.

Tracing green and
blue edges:
G,g → H,h → B,i
→ C,j → I,e.
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Comparing symbols

Are these two symbols really the same?

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
A

G

B

H

C

I

D

J

E F

3/5 6/5

3/5

6/5 3/5

3/5

3/5

3/5 3/5 3/5

f g

a

h i

b

j

c d e

G matches g or h.

Tracing green and
blue edges:
G,g → H,h → B,i
→ C,j → I,e.

But j and e also
share a red edge;
C and I don’t.
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Comparing symbols

Are these two symbols really the same?

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
A

G

B

H

C

I

D

J

E F

3/5 6/5

3/5

6/5 3/5

3/5

3/5

3/5 3/5 3/5

f g

a

h i

b

j

c d e

G matches g or h.

Tracing green and
blue edges:
G,g → H,h → B,i
→ C,j → I,e.

But j and e also
share a red edge;
C and I don’t.

G,h works.
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Traversing
D-symbols

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
1

Pick a start vertex.
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Traversing
D-symbols

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
1 2 3

4

Pick a start vertex.

Visit its red, green
and blue neighbor
in order.
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Traversing
D-symbols

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
1 2 5

6

3

4

Pick a start vertex.

Visit its red, green
and blue neighbor
in order.

Repeat in the order
the vertexes were
visited.
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Traversing
D-symbols

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
1 2 5

6

37

4

Pick a start vertex.

Visit its red, green
and blue neighbor
in order.

Repeat in the order
the vertexes were
visited.

Some Elementary Tiling Theory – p. 23



Traversing
D-symbols

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
1 2 5 8

96

37

4

Pick a start vertex.

Visit its red, green
and blue neighbor
in order.

Repeat in the order
the vertexes were
visited.
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Traversing
D-symbols

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
1 2 5 8

A96

37

4

Pick a start vertex.

Visit its red, green
and blue neighbor
in order.

Repeat in the order
the vertexes were
visited.
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Traversing
D-symbols

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
1 2 5 8

A96

37

4

3/5

6/5

3/5

6/5

3/5

3/5

3/5

3/5

3/5 3/5
2 1 3 7

A84

59

6

Pick a start vertex.

Visit its red, green
and blue neighbor
in order.

Repeat in the order
the vertexes were
visited.

This produces a unique ordering for each choice
of start vertex.
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Using traversals

3/56/5

3/56/5

3/53/5

3/53/5

3/5

3/5

1

2

5

8A

9

6

3

7

4 1: 2,3,4;3,5
2: 1,5,6;3,5
3: 7,1,7;3,5
4: 6,6,1;6,5
5: 8,2,9;3,5
6: 4,4,2;6,5
7: 3,8,3;3,5
8: 5,7,A;3,5
9: A,A,5;3,5
A: 9,9,8;3,5

3/56/5

3/56/5

3/53/5

3/53/5

3/5

3/5

2

1

3

7A

8

4

5

9

6 1: 2,3,4;3,5
2: 1,5,6;3,5
3: 7,1,8;3,5
4: 6,6,1;6,5
5: 9,2,9;3,5
6: 4,4,2;6,5
7: 3,9,A;3,5
8: A,A,3;3,5
9: 5,7,5;3,5
A: 8,8,7;3,5
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Using traversals

3/56/5

3/56/5

3/53/5

3/53/5

3/5

3/5

1

2

5

8A

9

6

3

7

4 1: 2,3,4;3,5
2: 1,5,6;3,5
3: 7,1,7;3,5
4: 6,6,1;6,5
5: 8,2,9;3,5
6: 4,4,2;6,5
7: 3,8,3;3,5
8: 5,7,A;3,5
9: A,A,5;3,5
A: 9,9,8;3,5

3/56/5

3/56/5

3/53/5

3/53/5

3/5

3/5

2

1

3

7A

8

4

5

9

6 1: 2,3,4;3,5
2: 1,5,6;3,5
3: 7,1,8;3,5
4: 6,6,1;6,5
5: 9,2,9;3,5
6: 4,4,2;6,5
7: 3,9,A;3,5
8: A,A,3;3,5
9: 5,7,5;3,5
A: 8,8,7;3,5

Write down the s and m values for each vertex
and compare by the first position that differs.
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Using traversals

3/56/5

3/56/5

3/53/5

3/53/5

3/5

3/5

1

2

5

8A

9

6

3

7

4 1: 2,3,4;3,5
2: 1,5,6;3,5
3: 7,1,7;3,5
4: 6,6,1;6,5
5: 8,2,9;3,5
6: 4,4,2;6,5
7: 3,8,3;3,5
8: 5,7,A;3,5
9: A,A,5;3,5
A: 9,9,8;3,5

3/56/5

3/56/5

3/53/5

3/53/5

3/5

3/5

2

1

3

7A

8

4

5

9

6 1: 2,3,4;3,5
2: 1,5,6;3,5
3: 7,1,8;3,5
4: 6,6,1;6,5
5: 9,2,9;3,5
6: 4,4,2;6,5
7: 3,9,A;3,5
8: A,A,3;3,5
9: 5,7,5;3,5
A: 8,8,7;3,5

Write down the s and m values for each vertex
and compare by the first position that differs.

⇒ use best traversal as a canonical form. Some Elementary Tiling Theory – p. 24



The .ds file format
<1.1:

1

2

3

4/3

8/3

8/3

Any pair of numbers.
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The .ds file format
<1.1:3 2:

1

2

3

4/3

8/3

8/3

Any pair of numbers.

The size and dimension.
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The .ds file format
<1.1:3 2:1 2 3,

1

2

3

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.
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The .ds file format
<1.1:3 2:1 2 3,1

1

2

3

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.
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The .ds file format
<1.1:3 2:1 2 3,1 3,

1

2

3

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.
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The .ds file format
<1.1:3 2:1 2 3,1 3,2

1

2

3

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.
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The .ds file format
<1.1:3 2:1 2 3,1 3,2 3:

1

2

3

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.

Some Elementary Tiling Theory – p. 25



The .ds file format
<1.1:3 2:1 2 3,1 3,2 3:4 8,

1

2

3

4

8

8

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.

Non-induced values of m01,
m12 in order.
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The .ds file format
<1.1:3 2:1 2 3,1 3,2 3:4 8,3>

1

2

3

3

3

3

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.

Non-induced values of m01,
m12 in order.
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The .ds file format
<1.1:3 2:1 2 3,1 3,2 3:4 8,3>

1

2

3

4/3

8/3

8/3

Any pair of numbers.

The size and dimension.

Images of s0, s1, s2 in order.

Non-induced values of m01,
m12 in order.

One line per symbol - mind the
punctuation.
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Thanks for your attention!

Software is available at

www.gavrog.org

Some Elementary Tiling Theory – p. 26


	What is a tiling?
	What is a tiling?
	What is a tiling?
	What is a tiling?
	What is a tiling?

	Symmetries
	Symmetries
	Symmetries
	Symmetries
	Symmetries
	Symmetries

	Equivalence
	Equivalence

	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?
	Are these the same?

	Barycentric triangulation
	Symbols for tilings
	Ingredients
	Ingredients
	Ingredients

	Formal conditions
	Formal conditions
	Formal conditions
	Formal conditions

	The curvature test
	The curvature test
	The curvature test
	The curvature test
	The curvature test
	The curvature test
	The curvature test

	Why D-symbols?
	Example:\Heaven & Hell tilings
	Example:\Heaven & Hell tilings

	All heaven and hell
	Transitivity
	Transitivity
	Transitivity
	Transitivity
	Transitivity

	Quick test
	Quick test

	Fundamental tilings
	Fundamental tilings
	Fundamental tilings
	Fundamental tilings

	Some of Heesch's tilings
	A hierarchy of tilings
	A hierarchy of tilings
	A hierarchy of tilings
	A hierarchy of tilings

	Split and glue
	Split and glue
	Split and glue
	Split and glue
	Split and glue
	Split and glue

	Dualization
	Dualization
	Dualization
	Dualization
	Dualization

	Dual D-symbols
	Comparing symbols
	Comparing symbols
	Comparing symbols
	Comparing symbols

	Traversing D-symbols
	Traversing D-symbols
	Traversing D-symbols
	Traversing D-symbols
	Traversing D-symbols
	Traversing D-symbols
	Traversing D-symbols

	Using traversals
	Using traversals
	Using traversals

	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format
	The {	t .ds} file format


